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Abstract
Autism Spectrum Disorder (ASD) is characterized by social interaction and communication deficits, repetitive behavior and 
often by co-occurring conditions such as language and non-verbal IQ development delays. Previous studies reported that those 
behavioral abnormalities can be associated with corpus callosum organization. However, little is known about the specific 
differences in white matter structure of the corpus callosum parts in children with ASD and TD peers and their relationships 
to core and co-occurring symptoms of ASD. The aim of the study was to investigate the volumetric and microstructural 
characteristics of the corpus callosum parts crucially involved in social, language, and non-verbal IQ behavior in primary-
school-aged children with ASD and to assess the relationships between these characteristics and behavioral measures. 38 
children (19 with ASD and 19 typically developing (TD) controls) were scanned using diffusion-weighted MRI and assessed 
with behavioral tests. The tractography of the corpus callosum parts were performed using Quantitative Imaging Toolkit 
software; diffusivity and volumetric measurements were extracted for the analysis. In the ASD group, fractional anisotropy 
(FA) was decreased across the supplementary motor area and the ventromedial prefrontal cortex, and axial diffusivity (AD) 
was reduced across each of the corpus callosum parts in comparison to the TD group. Importantly, the AD decrease was 
related to worse language skills and more severe autistic traits in individuals with ASD. The microstructure of the corpus 
callosum parts differs between children with and without ASD. Abnormalities in white matter organization of the corpus 
callosum parts are associated with core and co-occurring symptoms of ASD.

Keywords Corpus callosum · Tractography · Social interaction · Language abilities · Non-verbal IQ · Autism spectrum 
disorder

Introduction

Autism Spectrum Disorder (ASD) is a highly heterogeneous 
group of neurodevelopmental conditions characterized by 
permanent communication deficits, social interaction prob-
lems, and repetitive behavior/restricted interests (American 
Psychiatric Association 2013), as well as some co-occurring 
symptoms, such as intellectual delay, language impairment, 
attention deficit, etc. (Mayes & Calhoun 2001; Oeseburg 
et al. 2011; Schwartz & Neri 2012; Polyak et al. 2015). A 
range of the previous studies have revealed atypical white 
matter integrity in individuals with ASD (Travers et al. 2015; 
Nickel et al. 2017; Martino et al. 2017; Haigh et al. 2020; 
Chandran et al. 2021). As the corpus callosum (CC) is the 
largest white matter pathway that connects two hemispheres 
of the brain and coordinates information between them, its 
structural abnormalities can result in cognitive impairments 
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in ASD leading to both core and co-occurring symptoms 
of this disorder (Alexander et al. 2007; Zhang et al. 2022).

A number of studies comparing the characteristics of 
CC between children with and without ASD have identi-
fied multiple abnormalities in the ASD group, such as the 
reduction of the tract’s volume (Frazier et al. 2012), higher 
radial diffusivity (RD) (Temur et al. 2019), higher appar-
ent diffusion coefficient (ADC) (Hong et al. 2011), lower 
fractional anisotropy (FA) (Temur et al. 2019), higher mean 
diffusivity (MD) (Travers et al. 2015), and reduced fiber 
density (FD) (Dimond et al. 2019). Although some stud-
ies showed a total reduction in the volume of CC in ASD 
(Boger-Megiddo et al. 2006; Alexander et al. 2007), others 
indicated that specific areas are lower in volume including 
anterior (Vidal et al. 2006; Kilian et al. 2007), midbody (Kil-
ian et al. 2007), and posterior (Just et al. 2007) parts. In addi-
tion to CC volume, lower FA was found specifically in the 
genu (Barnea-Goraly et al. 2004; Travers et al. 2015), rostral 
body (Barnea-Goraly et al. 2004), body (Travers et al. 2015), 
and splenium (Alexander et al. 2007; Travers et al. 2015); 
lower axial diffusivity (AD) was revealed in midbody, isth-
mus, and splenium (Sui et al. 2018), and increased AD was 
found in the posterior CC (Travers et al. 2015); increased 
MD was found in the posterior CC (Travers et al. 2015).

Some studies have examined the relationships between 
both core and co-occurring symptoms of ASD and the 
microstructure and volume of the whole CC and its parts 
(Prigge et al. 2013; Lau et al. 2013). For example, it has been 
demonstrated that the lower communicative skills of chil-
dren with ASD measured with Autism Diagnostic Observa-
tion Schedule, Second Edition (ADOS-2) (Lord et al. 2012) 
were associated with a lower volume of the mid-posterior 
and anterior-middle parts of the CC as well as the whole 
CC (Zhang et al. 2022). However, Bakhtiari et al. (2012) 
did not show any associations between FA values in body, 
splenium, and genu of the CC and the severity of the autistic 
traits assessed by the Autism Quotient (AQ) self-report ques-
tionnaire (Baron-Cohen et al. 2001; Woodbury-Smith et al. 
2005) in individuals with ASD. Additionally, it has been 
shown that a lower total volume of the CC, higher MD, and 
lower FA and RD were related to a lower non-verbal IQ in 
individuals with ASD (Alexander et al. 2007), while higher 
volumes of the mid-posterior, anterior-middle parts of the 
CC and the whole CC were associated with lower verbal IQ 
(Zhang et al. 2022). Although there are no studies in ASD 
investigating the relationships between language abilities 
and CC characteristics, studies of other neurodevelopmental 
conditions indicated better verbal fluency to be associated 
with a higher volume of the whole CC (Narberhaus et al. 
2008; Kontis et al. 2009; Nosarti et al. 2004).

In the present research, the microstructure and volume 
characteristics of the CC were investigated in primary-
school-aged children with ASD. The purpose of the study 

was twofold: first, to examine possible differences in the 
microstructure and volume of the CC parts between children 
with ASD and age-matched typically developing (TD) con-
trols; second, to assess the relationships between behavioral 
measures (language skills, non-verbal IQ, and the severity of 
autistic traits) and characteristics of the CC parts in children 
with ASD. While a range of the previous studies investigated 
the relationships between non-verbal IQ (Alexander et al. 
2007), the severity of autistic symptoms (Zhang et al. 2022), 
and characteristics of the CC parts in children with ASD, we 
aimed, for the first time, to reveal the associations between 
all of these core/co-occurring symptoms and the characteris-
tics of the CC parts in the same group of children with ASD. 
We also addressed the relationship between language abili-
ties of children with ASD and the structure of the CC parts. 
Although it has been shown that vocabulary development 
and verbal fluency can be associated with CC organization 
in very preterm adolescents (Nosarti et al. 2004; Narber-
haus et al. 2008), there is a lack of studies investigating the 
relationship between language abilities and structure of the 
CC parts in individuals with ASD. Of note, each behavioral 
domain was assessed by standardized tests and scored using 
criterion-referenced score interpretations.

Methods

Participants

A total of 38 native Russian-speaking children partici-
pated in the study: 19 children with ASD (5 girls, age range 
8.01–14.01 years, Mage = 9.9, SD = 1.7) and 19 TD children 
as a control group (7 girls, age range 7.08–12.03 years, 
Mage = 9.7, SD = 1.5). TD children were recruited through 
advertising on social media. Exclusion criteria for TD chil-
dren was the previous history of psychiatric and neurode-
velopmental problems. Children with ASD were recruited 
from the Federal Resource Center for Organization of the 
Comprehensive Support to Children with Autism Spectrum 
Disorders (Moscow, Russia). Participants of both groups 
had no hearing or vision problems. The diagnosis of ASD 
was based on the International Classification of Diseases, 
ICD-10, and 17 out of 19 children also were assessed by 
a licensed psychiatrist using ADOS-2 (Lord et al. 2012). 
Additionally, parents of both ASD and TD groups of chil-
dren were asked to fill in the Russian version of the Autism 
Spectrum Quotient: Children’s Version, AQ (Auyeung et al. 
2008), where the questions were divided into 5 scales asso-
ciated with autism and broader phenotypes: social skills, 
attention switching, attention to details, communication, and 
imagination. The demographic information is provided in 
Table 1.
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Behavioral measurements

The non-verbal intelligence of TD children was assessed 
with Raven’s Colored Progressive Matrices (Raven 2000; 
2004), and the non-verbal IQ of children with ASD was 
measured with the Kaufman Assessment Battery for Chil-
dren, K-ABC II (Kaufman & Kaufman 2004), or Wechsler 
Intelligence Scale for Children—Third Edition, WISC-III 
(1991), performance IQ score. Language abilities were 
comprehensively evaluated with the Russian Child Lan-
guage Assessment Battery (RuCLAB) consisting of tests 
that assess phonological, lexical, morphosyntactic, and dis-
course levels in both the expressive and receptive domains 
(Arutiunian et al. 2022).

MRI data acquisition and processing

Magnetic resonance imaging (MRI) data were acquired 
using a 1.5 T Siemens Magnetom Avanto scanner. Diffusion-
weighted imaging (DWI) was performed using a single-shot 
echo-planar imaging sequence with the following parameters: 
one non-diffusion-weighted image, 64 non-collinear diffu-
sion directions, b value 1000 s/mm2, TR 6800 ms, TE 97 ms, 
voxel size 2.5 × 2.5 × 2.5 mm. The sequence was repeated 
twice with opposite phase-encoding directions (anterior–pos-
terior, AP, and posterior-anterior, PA). In addition, two short 
sequences were acquired with opposite phase-encoding direc-
tions (AP and PA), containing two non-diffusion-weighted 
images and 12 diffusion directions. Four subjects from the 
ASD group were scanned with only PA phase-encoding and 
one short sequence (AP) was acquired for them.

DWI data were corrected for eddy-current-induced dis-
tortions and subject motion using the ‘eddy’ function imple-
mented in the FSL (Jenkinson et al. 2012). Quantitative 
Imaging Toolkit software (QIT) was used to perform whole-
brain tractography using the hybrid probabilistic-determin-
istic approach (Cabeen et al. 2018). For each child, FA, 
MD, AD, FD, and volume were extracted for the CC parts 
projecting to the dorsomedial prefrontal cortex (dmPFC), 
superior parietal lobule (SPL), supplementary motor area 

(SMA), and ventromedial prefrontal cortex (vmPFC). We 
based this on the parcellation approach implemented in the 
QIT (Cabeen et al. 2018) where the CC is divided into 17 
parts on the basis of fiber terminations and chose four of 
them projecting to the crucial parts of the cortex for lan-
guage and social skills (Burin et al. 2014; Hiser & Koenigs 
2018; Quirarte et al. 2021; Banaszkiewicz et al. 2021).

Statistical analysis

First, to provide between-group comparisons in each 
metrics of CC (AD, MD, FA, FD, and volume), we fitted 
linear mixed-effects models with nested effects, includ-
ing the main effect of the part (dmPFC, SPL, SMA, and 
vmPFC), the effect of group (TD vs. ASD) nested within 
each part separately as fixed effects, and participants as a 
random intercept. The structure of the model was as fol-
lows: lmer(metrics ~ 1 + Part/Group + (1 | ID), data = data, 
control = lmerControl(optimizer = “bobyqa”). Second, to 
assess the relationships between the metrics of CC and 
behavioral measures in children with ASD, we fitted 
linear models included metrics as dependent variables 
and eight measures (age, non-verbal IQ, mean language 
score, and five AQ scores), according to the formula: 
lm(metrics ~ 1 + Age + Mean_language_score + IQ + AQ_
social + AQ_attention_to_detail + AQ_attention_switch-
ing + AQ_imagination + AQ_communication, data = data).

The analysis was performed in R (R Core Team 2019) 
with the lme4 package (Bates et  al. 2015). The tables 
for model outcomes were built with the sjPlot package 
(Lüdecke 2020), and the data were plotted with ggplot2 
(Wickham 2016). The correction for multiple comparisons 
(false discovery rate, FDR) was applied in R (function 
p.adjust.methods = "fdr"), so that all reported p values are 
FDR-corrected. Supplementary file 1 provides all the R 
codes used in the analysis and visualization with the struc-
tures/formulae for each model.

Table 1  Demographic 
information

The significance is labeled with *p < 0.05, **p < 0.01, ***p < 0.001 and highlighted in bold

Characteristics ASD (N = 19) TD (N = 19) t p

Sex (female/male) 5/14 7/12 0.68 0.50
Age (years) 9.9 ± 1.7 9.7 ± 1.5 0.48 0.64
AQ score: social skills 15.7 ± 6.5 7.8 ± 3.1 4.87  < 0.001*
AQ score: attention switching 16.4 ± 4 12.2 ± 3 4.19  < 0.002*
AQ score: attention to details 15.1 ± 5 13.9 ± 4.6 1.51 0.14
AQ score: communication 21 ± 4.3 8.8 ± 4.7 9.23  < 0.001*
AQ score: imagination 15.9 ± 6.8 9 ± 3 3.83  < 0.005*
Mean language score 0.75 ± 0.22 0.95 ± 0.03 − 3.87  < 0.004*
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Results

Behavioral assessment

To explore the differences in children’s behavioral meas-
ures, we compared the ASD and TD groups. There was 
significantly higher language performance in TD children: 

MASD = 0.75 (SD = 0.22) vs. MTD  = 0.95 (SD = 0.03), 
t(36) = -3.87, p < 0.001. There were also significant differ-
ences in four out of five AQ scales between groups of chil-
dren with ASD and TD children: social skills, MASD = 15.7 
(SD = 6.5) vs. MTD = 7.8 (SD = 3.1), t(36) = 4.87, 
p < 0.001; attention switching, MASD = 16.4 (SD = 4.0) vs. 
MTD = 12.2 (SD = 3.0), t(36) = 4.19, p = 0.002; commu-
nication, MASD = 21 (SD = 4.3) vs. MTD = 8.8 (SD = 4.7), 
t(36) = 9.23, p = 0.001; imagination, MASD = 15.9 
(SD = 6.8) vs. MTD = 9 (SD = 3.0), t(36) = 3.83, p = 0.005. 
Hence, the severity of autistic symptoms was higher in the 
ASD group, according to AQ scores.

Between‑group comparisons in CC structure

An illustration of the parts of CC investigated in the study 
can be seen in Fig. 1.

Between-group comparisons showed significantly 
lower AD values in the ASD group across all parts of the 
CC (Fig. 2, Table 2): dmPFC, MTD = 0.0013 (SD = 3.79) 
vs. MASD = 0.0010 (SD = 3.67), Est = 0.00, SE = 0.00, 
t = 2.49, p = 0.024; SPL, MTD = 0.00141 (SD = 3.76) 
vs. MASD = 0.00138 (SD = 3.94), Est = 0.00, SE = 0.00, 
t = 2.26, p = 0.024; SMA, MTD = 0.00132 (SD = 4.07) 
vs. MASD = 0.00129 (SD = 3.37), Est = 0.00, SE = 0.00, 
t = 2.37, p = 0.024; vmPFC, MTD = 0.0013 (SD = 3.34) vs. 
MASD = 0.0012 (SD = 3.93), Est = 0.00, SE = 0.00, t = 2.77, 
p = 0.024. We also found that FA values are significantly 
lower in children with ASD across SMA and vmPFC 

Fig. 1  An illustration of the corpus callosum parts projecting to the 
dorsomedial prefrontal cortex (dmPFC), superior parietal lobule 
(SPL), supplementary motor area (SMA), and ventromedial prefron-
tal cortex (vmPFC)

Fig. 2  Between-group (ASD vs. TD) comparisons on each metrics in the CC parts
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parts (Fig. 2, Table 3): SMA, MTD = 0.4981 (SD = 0.02) 
vs. MASD = 0.4804 (SD = 0.03), Est = 0.02, SE = 0.01, 
t = 2.41, p = 0.050; vmPFC, MTD = 0.4624 (SD = 0.02) vs. 
MASD = 0.4460 (SD = 0.03), Est = 0.02, SE = 0.01, t = 2.24, 
p = 0.050. Other metrics did not differ between groups of 
children (Fig. 2, Tables 4, 5 and 6).

The relationships between CC structure 
and behavioral measures in ASD

To analyze how a pathological decrease of AD and FA in 
the CC parts in children with ASD was related to behavio-
ral/clinical measures, we fitted linear models (see details 
in Statistical analysis) with tract’s metrics as a dependent 
variable and children’s individual characteristics (age, lan-
guage score, non-verbal IQ, and AQ scores) as predictors. 
The analysis showed that a lower AD in the part of the CC 
projecting to SMA was associated with worse language 
skills: Est = 0.00, SE = 0.00, t = 3.55, p = 0.042. A lower 
AD in the same structure was also related to higher scores 
in the AQ scale (attention to details) and, thus, more severe 
impairments in this domain of functioning: Est = − 0.00, 
SE = 0.00, t = − 3.07, p = 0.048 (Table 7). Other relation-
ships were not significant.

Discussion

The aim of this study was to investigate the structural char-
acteristics (AD, MD, FA, FD, and volume) of the parts 
of CC in primary-school-aged children with ASD and 
reveal the relationships between these characteristics and 
behavioral measures (language abilities, non-verbal IQ, 
and the severity of autistic symptoms) in these children. 
Our results showed that AD and FA values are decreased 
in the CC parts in children with ASD compared to their 
TD peers. We also showed that the pathological decrease 
of AD across the SMA part is related to worse language 
scores and a higher severity of the autistic traits in indi-
viduals with ASD.

The between-group comparisons showed decreased 
AD across all parts of the CC in children with ASD. The 
AD metric represents the magnitude of diffusion along the 
principal diffusion direction (Gibbard et al. 2013). There is 
an evidence that axial diffusivity can be decreased during 
the white matter development due to reduction in a water 
content of the brain and an increase in membrane density 
(Dubois et al. 2008). Additionally, number of studies linked 
decreased AD to axonal damage (Winklewski et al. 2018) 
and altered axonal integrity (Tu et al. 2016). Thus, our 
results might assume either axonal injuries of CC’s fibers in 
the ASD group including caliber reduction, a less coherent 
and less symmetrical orientation of the axons of CC in chil-
dren with ASD compared to TD controls (Takahashi et al. 
2000; Winklewski et al. 2018) or slower CC development 
in ASD rather than in TD children (Gao et al. 2009). Our 
results are in line with Sui et al. (2018) who found reduced 

Table 2  Between-group 
comparison (TD vs. ASD) in 
the axial diffusivity of the parts 
of CC

The significance is labeled with *p < 0.05, **p < 0.01, ***p < 0.001 and highlighted in bold

Predictors Axial diffusivity (AD)

Estimate Standard error t p

(Intercept) 0.00 0.00 179.46  < 0.001*
SPL − 0.00 0.00 − 9.00  < 0.001*
SMA 0.00 0.00 19.21  < 0.001*
vmPFC − 0.00 0.00 − 0.45 0.651
dmPFC:TD_group 0.00 0.00 2.49 0.024*
SPL:TD_group 0.00 0.00 2.26 0.024*
SMA:TD_group 0.00 0.00 2.37 0.024*
vmPFC:TD_group 0.00 0.00 2.77 0.024*
Random effects
 σ2 0.00
 τ00 ID 0.00
 ICC 0.61
 N ID 38
 Observations 152
 Marginal R2/conditional R2 0.688/0.878

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



780 Brain Structure and Function (2023) 228:775–785

1 3

AD in midbody, isthmus, and splenium and with Andrews 
et al. (2019) who found lower AD across body, genu, and 
splenium in males with ASD compared to TD males. The 
findings of the Andrews et al.’s (2019) study support the 
results of the current study, not only confirming but also val-
idating them, since the sample size of their study is greater 
than in ours (85 males with ASD, 42 TD males). However, 
our findings on AD decrease across the corpus callosum 
parts are controversial to Travers et al. (2015) who showed 
that AD is increased in splenium. Additionally, Alexander 

et al. (2007) found no significant difference in AD between 
children with and without ASD in genu, body, and splenium.

In line with Barnea-Goraly et al. (2004) and Alexan-
der et al. (2007) who demonstrated reduced FA in body 
and genu of the CC and Travers et al. (2015) who showed 
lower FA across genu, body, splenium, we found a sig-
nificant decrease in FA values of the CC across SMA and 
vmPFC parts between the two groups. The FA metric is a 
measure of the directionality of diffusion anisotropy. It has 
been shown that decreased FA can be connected to axonal 

Table 3  Between-group 
comparison (TD vs. ASD) in 
the fractional anisotropy of the 
parts of CC

The significance is labeled with *p < 0.05, **p < 0.01, ***p < 0.001 and highlighted in bold

Predictors Fractional anisotropy (FA)

Estimate Standard error t p

(Intercept) 0.48 0.00 109.44  < 0.001*
SPL − 0.01 0.00 − 3.29 0.001*
SMA 0.05 0.00 16.72  < 0.001*
vmPFC − 0.00 0.00 − 0.48 0.631
dmPFC:TD_group 0.01 0.01 1.67 0.125
SPL:TD_group − 0.00 0.01 − 0.45 0.651
SMA:TD_group 0.02 0.01 2.41 0.050*
vmPFC:TD_group 0.02 0.01 2.24 0.050*
Random effects
 σ2 0.00
 τ00 ID 0.00
 ICC 0.62
 N ID 38
 Observations 152
 Marginal R2/conditional R2 0.584/0.844

Table 4  Between-group 
comparison (TD vs. ASD) in 
the volume of the parts of CC

The significance is labeled with *p < 0.05, **p < 0.01, ***p < 0.001 and highlighted in bold

Predictors Volume

Estimate Standard error t p

(Intercept) 31,497.72 996.23 31.62  < 0.001*
SPL 9895.54 981.16 10.09  < 0.001*
SMA 9403.12 981.16 9.58  < 0.001*
vmPFC 3704.17 981.16 3.78  < 0.001*
dmPFC:TD_group 4898.21 1977.45 2.48 0.052
SPL:TD_group 2951.16 1977.45 1.49 0.262
SMA:TD_group 1955.63 1977.45 0.99 0.323
vmPFC:TD_group 2552.95 1977.45 1.29 0.262
Random effects
 σ2 24,387,805.17
 τ00 ID 12,759,998.32
 ICC 0.34
 N ID 38
 Observations 152
 Marginal R2/conditional R2 0.838/0.894
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damages including dysmyelination or reduced axonal myeli-
nation, lower axon density and diameter (Le Bihan 2003; 
Winston 2012), higher proportion of crossing fibers (Jones 
et al. 2013), and disorganization of fibers (Aung et al. 2013). 
Therefore, we can conclude that diffusion in the CC’s fibers 
projecting to SMA and vmPFC cortices are more isotropic 
in the ASD group compared to the TD group. Although, as 
in the previous study on investigating FA values in depressed 
patients (Meinert et al. 2019), we did not measure myeli-
nation directly, there is evidence that reduced FA can be 

explained by the hypersecretion of glucocorticoids (Fro-
dle & O’Keane 2013) leading to altered oligodendrocyte 
functioning and potentially reduced myelination (Jauregui-
Huerta et al. 2010).

The analysis revealed that MD, RD values and volume of 
the CC parts did not differ between the two groups. These 
results are not consistent with those reporting higher MD 
of the posterior CC in ASD (Travers et al. 2015) and lower 
volume in anterior (Vidal et al. 2006; Kilian et al. 2007), 
midbody (Kilian et al. 2007), and posterior (Just et al. 2007) 

Table 5  Between-group 
comparison (TD vs. ASD) in 
the mean diffusivity of the parts 
of CC

The significance is labeled with *p < 0.05, **p < 0.01, ***p < 0.001 and highlighted in bold

Predictors Mean diffusivity (MD)

Estimate Standard error t p

(Intercept) 0.00 0.00 147.10  < 0.001*
SPL − 0.00 0.00 − 4.33  < 0.001*
SMA 0.00 0.00 4.29  < 0.001*
vmPFC 0.00 0.00 0.60 0.547
dmPFC:TD_group 0.00 0.00 0.87 0.738
SPL:TD_group 0.00 0.00 1.99 0.184
SMA:TD_group 0.00 0.00 0.27 0.785
vmPFC:TD_group 0.00 0.00 0.59 0.738
Random effects
 σ2 0.00
 τ00 ID 0.00
 ICC 0.59
 N ID 38
 Observations 152
 Marginal R2/conditional R2 0.199/0.669

Table 6  Between-group 
comparison (TD vs. ASD) in 
the fiber density of the parts 
of CC

The significance is labeled with *p < 0.05, **p < 0.01, ***p < 0.001 and highlighted in bold

Predictors Fiber density

Estimate Standard error t p

(Intercept) 157.65 4.89 32.25  < 0.001*
SPL 21.70 4.97 4.37  < 0.001*
SMA 8.78 4.97 1.77 0.077
vmPFC 17.73 4.97 3.57  < 0.001*
dmPFC:TD_group 4.66 9.86 0.47 0.637
SPL:TD_group 11.80 9.86 1.20 0.231
SMA:TD_group − 10.70 9.86 − 1.09 0.278
vmPFC:TD_group 12.80 9.86 1.30 0.194
Random effects
 σ2 625.77
 τ00 ID 297.49
 ICC 0.32
 N ID 38
 Observations 152
 Marginal R2/conditional R2 0.431/0.615
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parts of the CC. These differences can be caused by various 
tractography techniques, parcellation approaches and the 
highly heterogeneous nature of the ASD population.

The investigation of how the pathological reduction of 
AD and FA values in the CC parts is related to behavioral 
measures in ASD showed that the lower AD in the part of 
the CC projecting to SMA is associated with poorer lan-
guage performance and more impaired attention to details 
in children with ASD. While previous studies showed that 
the severity of autistic traits is related to the lower volume of 
the CC and its parts (Prigge et al. 2013; Zhang et al. 2022), 
we demonstrated that a decreased AD is also associated with 
more severe autistic traits. Although it has been shown that 
language impairment can be related to the pathology of the 
volume of the CC parts in adolescents who were born very 
preterm (Nosarti et al. 2004; Narberhaus et al. 2008), we 
found that the volume of the CC parts is not related to lan-
guage abilities in children with ASD. However, we demon-
strated that the decrease of AD across the SMA part is asso-
ciated with poorer language performance in children with 
ASD. These differences can be explained by the specificity 
of the autistic brain organization and the types of language 
tests used in previous studies. Our findings also showed 
that there are not any links between FA values of SMA and 
vmPFC parts of the CC and the behavioral characteristics of 
ASD. These results are in line with Bakhtiari et al. (2012) 
who also showed that a reduction of FA in the CC parts is 
not related to the severity of autistic traits.

Implications

It is important to note that the parts of the CC analyzed in 
the previous studies differed from those we chose. However, 
we conclude that reduced AD and FA are specific for the CC 
parts in individuals with ASD, as our work and some other 
studies (Barnea-Goraly et al. 2004; Keller et al. 2007; Trav-
ers et al. 2015; Sui et al. 2018; Temur et al. 2019) showed 
decreased values of these metrics. This result contributes to 
the understanding of white matter organization in children 
with ASD pointing out that there are specific diffusion dif-
ferences in the CC of the autistic brain associated with core 
and co-occurring symptoms of this disorder.

Limitations and future research

There are several potential limitations associated with this 
study. First, we measured the severity of autistic traits indi-
rectly, using a parental questionnaire. It may be more appro-
priate in future to assess each behavioral characteristic using 
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more direct tests. Second, the sample size of the current 
study was moderate, which could affect statistical power.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00429- 023- 02617-y.
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